WitCH 9: A Distant Hope

This WitCH (as is the accompanying PoSWW) is an exercise and solution from Cambridge’s Mathematical Methods Units 1 and 2, and is courtesy of the Evil Mathologer. (A reminder that WitCH 2, WitCH3, Witch 7 and WitCH 8 are still open for business.)


As Number 8 and Potii pointed out, notation of the form AB is amtriguous, referring in turn to the line through A and B, the segment from A to B and the distance from A to B. (This lazy lack of definition appears to be systemic in the textbook.) And, as Potii pointed out, there’s nothing stopping A being the same point as C.

And, the typesetting sucks.

And, “therefore” dots suck.

PoSWW 3: Not the Right Angle

This PoSWW (as is the accompanying WitCH) is from Cambridge’s Mathematical Methods Units 1 and 2. and is courtesy of the Evil Mathologer. (A reminder, we continue to post on Cambridge not because their texts are worse than others, but simply because their badness is what we get to see. We welcome all emails with any suggestions for PoSWWs or WitCHes.)

We will update this PoSWW, below, after people have had a chance to comment.


Similar to Witch 6, the above proof is self-indulgent crap, and obviously so. It is obviously not intended to be read by anyone.

One can argue how much detail should be given in such a proof, particularly in a subject and for a curriculum that systemically trashes the concept of proof. But it is difficult to see why the diagram below, coupled with the obvious equations and an easy word, wouldn’t suffice.


WitCH 8: Oblique Reasoning

A reminder, WitCH 2, WitCH 3 and WitCH 7 are also open for business. Our new WitCH comes courtesy of John the Merciless. Once again, it is from Cambridge’s text Specialist Mathematics VCE Units 3 & 4 (2019). The text provides a general definition and some instruction, followed by a number of examples, one of which we have included below. Have fun.


With John the Impatient’s permission, I’ve removed John’s comments for now, to create a clean slate. It’s up for other readers to do the work here, and (the royal) we are prepared to wait (as is the continuing case for WitCh 2 and Witch 3).

This WitCH is probably difficult for a Specialist teacher (and much more so for other teachers). But it is also important: the instruction and the example, and the subsequent exercises, are deeply flawed. (If anybody can confirm that  exercise 6G 17(f) exists in a current electronic or hard copy version, please indicate so in the comments.)

WitCH 7: North by Southwest

Our new WitCH, below, comes courtesy of Charlie the Enforcer. Once again, this WitCH is from the 2018 SCSA Mathematical Methods Exam (here and here): it’s the gift that keeps on giving. (And a reminder, WitCH 2 and WitCH 3 still require attention are still unresolved.)

Question 11 and the solution in SCSA’s marking key are below. Happy hunting.


John has pretty much caught it all. The killer issue is the use of the term “deceleration” in part (c) which, the solution implies, refers to the drone speeding up in the southerly direction. This is arguably permissible, since deceleration can be (though is far from universally) defined as a negative acceleration, and since way back in part (a) it was implied that North coincides with the positive x direction.

Permissible acts, however, can nonetheless be idiotic: voting Liberal or Republican, for example. And, to use “deceleration” on a high stakes exam to refer implicitly to increasing speed is idiotic. Moreover, to use “deceleration” in this manner immediately after explicitly indicating the “due south” direction of motion is truly ruly idiotic. Still not as idiotic as voting Liberal or Republican, but genuinely special-effort idiotic.

That’s enough to condemn the question, even by SCSA standards. But, the question is also awful in many other ways:

  • The question is boring and butt ugly.
  • No indication is given whether exact or numerical solutions are permitted or required.
  • Having a drone an arbitrary 5m up in the sky for a 1D problem is asking for trouble. For example:
  • The “displacement” of x(0) = 0 for a drone 5m up is pretty stupid.
  • “Where is the drone in relation to the [mysterious] pilot?” Um, kind of uppish?
  • “How far has the drone travelled …” is needlessly wordy and ambiguous. If you want a distance, for God’s sake say “distance”.
  • Given the position function x(t) is at hand, part (c) can easily and naturally be solved by hand. But of course why think about things when you can do mindless calculator crap?

It’s Time to ATAR and Feather the Labor Party

Tanya Plibersek, Australian Labor’s Shadow Minister for Education, has just been reaching out to the media. Plibersek has objected to the low ATAR sufficient for school leavers to gain entry to a teaching degree, and she has threatened that if universities don’t raise the entry standards then Labor may impose a cap on student numbers:

We [should] choose our teaching students from amongst the top 30 per cent …

This raises the obvious question: why the top 30 per cent of students? Why not the top 10 per cent? Or the top 1 per cent? If you’re going to dream an impossible dream, you may as well make it a really good one.

Plibersek is angry at the universities, claiming they are over-enrolling and dumbing down their teaching degrees, and of course she is correct. Universities don’t give a damn whether their students learn anything or whether the students have any hope of getting a job at the end, because for decades the Australian government has paid universities to not give a damn. The universities would enrol carrots if they could figure out a way for the carrots to fill in the paperwork.

The corruption of university teaching enrolment, however, has almost nothing to do with the poor quality of school teachers and school teaching. The true culprits are the neoliberal thugs and the left wing loons who, over decades, have destroyed the very notion of education and thus have reduced teaching to a meaningless, hateful and hated profession, so that with rare exceptions the only people who become teachers are those with either little choice or little sense or a masochistically high devotion to civic duty.

If Plibersek wants “teaching to be as well-respected as medicine” then perhaps Labor could stick their neck out and fight for a decent increase in teachers’ wages. Labor could fight for the proper academic control of educational disciplines so that there might be a coherent and deep Australian curriculum for teachers to teach. Labor could fight against teachers’ Sisyphean reporting requirements and against the swamping over-administration of public schools. Labor could promise to stop, entirely, the insane funding of poisonously wealthy private schools. Labor could admit that for decades they have been led by soulless beancounters and clueless education hacks, so as much as anyone they have lost sight of what education is and how a government can demand it.

But no. Plibersek and Labor choose an easy battle, and a stupid, pointless battle.

None of this is to imply that Labor’s opponents are better. Nothing could be worse for education, or anything, than the sadistic, truth-killing Liberal-National psychopaths currently in power.

But we expect better from Labor. Well, no we don’t. But once upon a time we did.

WitCH 6: Parallel Reality

In this WitCH we will again pick on the Cambridge text Specialist Mathematics VCE Units 3 & 4 (2019): see the extract below. (We’d welcome any email or comment with suggestions of other generally WitCHful texts and/or specific WitCHes.) And, a reminder that there is still plenty left to discover in WitCH 2 , WitCH 3 and Tweel’s Mathematical Puzzle.

Have fun.


Below, we go through the passage line by line, but that fails to capture the passage’s intrinsic awfulness. The passage is, as John put it pithily below, a total fatberg. The passage is worse than wrong; it is clumsy, pompous, circuitous, barely comprehensible and utterly pointless.

Why do this? Why write like this? Sure, ideas, particularly mathematical ideas, can be tricky and difficult to convey; dependence/independence isn’t particularly easy to explain. And sure, we all write less clearly than we might wish on occasion. But, if you write/proofread/edit something that the intended “readers” will obviously struggle to understand, then all you’re doing is either showing off or engaging in a meaningless ritual.

An underlying problem is that the entire VCE topic is pointless. Yes, this is the fault of the idiotic VCAA, not the text, but it has to be said, if only as a partial defence of the text. No purpose is served by including in the curriculum a subtle definition that is not then reinforced in some meaningful manner. Consequently, it’s close to impossible to cover this aspect of the curriculum in an efficient, clear and motivated manner. The text could have been one hell of a lot better, but it probably never could have been good.

OK, to the details. Grab a whisky and let’s go.

  • First, a clarification. The definition of “parallel vectors” appears in a slightly earlier part of the text. We included it because it is clearly relevant to the main excerpt. We didn’t intend, however, to suggest that the discussion of dependence began with the “parallel” definition.
  • For the given definition of “parallel vectors” it is redundant and distracting to specify that the scalar k not be 0.
  • As discussed by Number 8, the definition of “parallel vectors” should not exclude the zero vector. The exclusion may be natural in the context of geometric proofs, but here it is a needless source of fussiness, distraction and error.  As an example of a blatant error, immediately following the above passage the text begins a proposition with “Let a and b be two linearly independent (i.e. not parallel) vectors.” A second and entirely predictable error occurs when the text later goes on to “resolve” an arbitrary vector a into components “parallel” and “perpendicular” to a second vector b.
  • The definition of “linear combination” involves a clumsy and needless use of subscripts. Thankfully, though weirdly, subscripts aren’t used in the subsequent discussion. The letters used for the vector variables are changed, however, which is the kind of minor but needless, own-goal distraction that shouldn’t occur.
  • No concrete example of linear combination is provided. (The more abstract the ideas, the more critical it is that they be anchored immediately with very specific illustration.)
  • It is a bad choice to begin with “linear combination”. That idea is difficult enough, but it also leads to a poor and difficult definition of linear dependence, an unswallowable mouthful: “… at least one of its members [elements? vectors?] can be expressed as a linear combination of [the] other vectors [members? elements?] …” Ugh! What really kills this sentence is the “at least one”which stems from the asymmetry hiccup in the definition. (The hiccup is illustrated, for example, by the three vectors a = 3 + 2j + k, b = 9i + 6j + 3k, c = 2i + 4j + 3k. These vectors are dependent, since b = 3a + 0c is a combination of a and c. Note, however, that c cannot be written as a combination of a and b.)
  • As was appropriately done for “linear combination”, the definition of linear dependence should be framed in terms of two or three vectors staring at the reader, not for “a set of vectors”. 
  • The language of sets is obscure and unnecessary.
  • No concrete example of linear dependence is provided. There is not even the specialisation to the case of two and/or three vectors (which, again, is how they should have begun).
  • If you’re going to begin with “linear combination” then don’t. But, if you are, then the definition of linear independence should precede linear dependence, since linear independence doesn’t have the asymmetry hiccup: no vector can be written as a combination of the other vectors. Then, “dependent” is defined as not independent.
  • No concrete example of linear independence is provided. 
  • The properly symmetric “examples” are the much preferred definition(s) of dependence. 
  • The “For example” is weird. It is more accurate to label what follows as special cases. They are not just special cases, however, since they also incorporate non-obvious reworking of the definition of dependence.
  • No proof or discussion is provided that the “example[s]”  are equivalent to the definition. 
  • No genuine example is provided to illustrate the “example[s]”.
  • The simple identification of two vectors being parallel/non-parallel if and only if they are dependent/independent is destroyed by the exclusion of the zero vector.
  • There is no indication why any set of vectors including the zero vector must be dependent. 
  • The expression “two-dimensional vector” is lazy and wrong: spaces have dimension, not vectors. (Ditto “three-dimensional vectors”.)
  • No proof or discussion is provided that any set of three “two dimensional vectors” is dependent. (Ditto “four three-dimensional vectors”.)
  • The “method” for checking the dependence of three vectors is close to unreadable. They could have begun “Let a and b be linearly independent vectors”. (Or, with the correct definition, “Let a and b be non-parallel vectors”.)
  • There is no indication of or clarification of or illustration of the subtle distinction between the original “definition” of linear dependence and the subsequent “method”.

What a TARDIS of bullshit. 

The Crap Aussie Curriculum Competition

The Evil Mathologer is out of town and the Evil Teacher is behind on sending us our summer homework. So, we have time for some thumping and we’ll begin with the Crap Australian Curriculum Competition. (Readers are free to decide whether it’s the curriculum or the competition that is crap.) The competition is simple:

Find the single worst line in the Australian Mathematics Curriculum.

You can choose from either the K-10 Curriculum or the Senior Curriculum, and your line can be from the elaborations or the “general capabilities” or the “cross-curriculum priorities” or the glossary, anywhere. You can also refer to other parts of the Curriculum to indicate the awfulness of your chosen line, as long as the awfulness is specific. (“Worst line” does not equate to “worst aspect”, and of course the many sins of omission cannot be easily addressed.)

The (obviously subjective) “winner” will receive a signed copy of the Dingo book, pictured above. Prizes of the Evil Mathologer’s QED will also be awarded as the judges see fit.

Happy crap-hunting.

WitCH 5: What a West

This one’s shooting a smelly fish in a barrel, almost a POSWW. Sometimes, however, it’s easier for a tired blogger to let the readers do the shooting. (For those interested in more substantial fish, WitCH 2, WitCH 3 and Tweel’s Mathematical Puzzle still require attention.)

Our latest WitCH comes courtesy of two nameless (but maybe not unknown) Western troublemakers. Earlier this year we got stuck into Western Australia’s 2017 Mathematics Applications exam. This year, it’s the SCSA‘s Mathematical Methods exam (not online. Update: now online here and here.) that wins the idiocy prize. The whole exam is predictably awful, but Question 15 is the real winner:

The population of mosquitos, P (in thousands), in an artificial lake in a housing estate is measured at the beginning of the year. The population after t months is given by the function, \color{blue}\boldsymbol{P(t) = t^3 + at^2 + bt + 2, 0\leqslant t \leqslant 12}.

The rate of growth of the population is initially increasing. It then slows to be momentarily stationary in mid-winter (at t = 6), then continues to increase again in the last half of the year. 

Determine the values of a and b.

Go to it.


As Number 8 and Steve R hinted at and as Damo nailed, the central idiocy concerns the expression “the rate of population growth”, which means P'(t) and which then makes the problem unsolvable as written. Specifically:

  • In the second paragraph, “it” has a stationary point of inflection when t = 6, which is impossible if “it” refers to the quadratic P'(t).
  • On the other hand, if “it” refers to P(t) then solving gives a < 0. That implies P”(0) = 2a < 0, which means “the rate of population growth” (i.e. P’) is initially decreasing, contradicting the first claim of the second paragraph.

The most generous interpretation is that the examiners intended for the population P, not the rate P’, to be initially increasing. Other interpretations are less generous.

No matter the intent, the question is inexcusable. It is also worth noting that even if corrected the question is awful, a trivial inflection problem dressed up with idiotic modelling:

  • Modelling population growth with a cubic is hilarious.
  • Months is a pretty stupid unit of time.
  • The rate of population growth initially increasing is irrelevant.
  • Why is the lake artificial? Who gives a shit?
  • Why is the lake in a housing estate? Who gives a shit?

Finally, it’s “latter half” or “second half”, not “last half”. Yes, with all else awful here, it hardly matters. But it’s wrong.

Further Update

The marking schemes for the exam are now up, here and here.  As was predicted, “the rate of growth of the population” was intended to mean “population”. As is predictable, the grading scheme gives no indication that the question is garbled garbage.

The gutless contempt with which certain educational authorities repeatedly treat students and teachers is a wonder to behold.