The Marriage Equality Theorem

Theorem: Let V be the set of valid arguments against marriage equality. Then is empty.

Proof: Let P be a valid argument. Then, by now, someone would have argued P. This has not occurred. (Proof: by exhaustion.) By contradiction, it follows that P does not exist, and thus V is empty. QED.

An alternative, direct proof of the theorem was provided by the California Supreme Court; their proof applied the definition of equality.

Consideration of the many straight-forward corollaries of this theorem are left to the reader.

2 Replies to “The Marriage Equality Theorem”

Leave a Reply

Your email address will not be published. Required fields are marked *

The maximum upload file size: 128 MB. You can upload: image, audio, video, document, spreadsheet, interactive, text, archive, code, other. Links to YouTube, Facebook, Twitter and other services inserted in the comment text will be automatically embedded. Drop file here