See the Evil Mathologer and the Evil Marty, December 3

On Tuesday December 3, the Australian Mathematics Society will hold a free education afternoon at Monash University, Clayton, as part of their annual conference. The talk details are below, and full details (except for the lecture theatre, TBD) are here. You aren’t required to register, but you can do so here (and it is appreciated if you do).

**************************************************

1:30 Joanna Sikora: Advancing Women in Australian Mathematics: context, challenges and achievements

This talk reviews recent research undertaken by social scientists on women in mathematics. First, adopting a life-course perspective it summarises findings on the persisting gap in vocational interest in mathematics among adolescent boys and girls, including its potential to widen over time. Systematic differences between boys and girls in the choice of basic and advanced mathematics for ATAR (Australian Tertiary Admissions Rank) are discussed. Next, the consequences of these choices for tertiary education specialisations and availability of suitably qualified male and female graduates are considered.

Following this introduction, the talk summarizes research on underrepresentation of women in mathematics departments in Australia and across the world. The focus is on structural and institutional process which, over the course of individual careers, can amount to significant disadvantage even in the absence of overt discrimination. Topics discussed include cultural stereotypes that link perceptions of brilliance and academic talent with masculinity, gender differences in professional capital, i.e. peer esteem, accorded to male and female mathematicians, the gender gap in rates of publications and impact, documented bias in student evaluations and factors that enable success in establishing international collaborations. The talk concludes by summarizing the literature on practical steps that we can take to improve gender equity.

2:20 Julia Collins and Katherine Seaton: Knitting and Folding Mathematics

Mathematical thinking is not confined to mathematicians, but one place you may not expect to find it is in the world of crafts. Even the most maths-anxious knitters will display an astonishing familiarity with concepts from geometry, topology, number theory and coding, while modern origami artists are turning to mathematical algorithms to create models previously thought to be unfoldable. This talk will highlight a number of surprising connections between maths and craft, and will be followed by a hands-on session facilitated by Maths Craft Australia where people can create some mathematical craft for themselves. (Knitting/crochet needles and origami paper will be provided, but participants are also encouraged to bring their own! Knitting in the audience is strictly encouraged.)

2:45 Afternoon Tea

3:10 Marty Ross: How I teach, why the Mathologer is evil, and other indiscrete thoughts

In this shamelessly narcissistic talk I will reveal the One True Secret to teaching mathematics. Along the way I will explain why you can and should ignore STEM, calculators, Mathematica, iPads, the evil Mathologer, constructivism, growth mindset, SOLO, Bloom, flipping classrooms, centering children, lesson plans, skeleton notes, professional standards and professional development and many other modern absurdities.

3:35 David Treeby: How to Instil Mathematical Culture in Secondary Education

Over the past few decades, mathematicians have ceded the educational space to two groups: mathematics educators and technology companies. This has had a dire effect on what mathematics is taught and how it is taught. The result is a commodified brand of distorted mathematics. This talk will focus on how some well-resourced schools have resisted these changes, and how broad and equitable change will require the support of working mathematicians and their professional bodies.

4:00 Burkard Polster: Mathologer: explaining tricky maths on YouTube

In this session I’ll talk about my experience running the YouTube channel Mathologer and I’ll give you a sneak peek of the video that I am currently working on.

WitCH 29: Bad Roots

This one is double-barrelled. A strange multiple choice question appeared in the 2019 NHT Mathematical Methods Exam 2 (CAS). We had thought to let it pass, but a similar question appeared in last’s weeks Methods exam (no link yet, but the Study Design is here). So, here we go.

First, the NHT question:

The examination report indicates the correct answer, C, and provides a suggested solution:

\Large\color{blue} \boldsymbol{ g(x)=f^{-1}(x)=\frac{x^{\frac15}-b}{a},\ g'(x) = \frac{x^{-\frac45}}{5a},\ g'(1) = \frac1{5a}}

And, here’s last week’s question (with no examination report yet available):

WitCH 27: Uncomposed

Ah, so much crap …

Tons of nonsense to post on, and the Evil Mathologer is breathing down our neck. We’ll have (at least) three posts on last week’s Mathematical Methods exams. This one is by no means the worst to come, but it fits in with our previous WitCH, so let’s quickly get it going. It is from Exam 1. (No link yet, but the Study Design is here.)

WitCH 26: Imminent Domain

The following WitCH is pretty old, but it came up in a tutorial yesterday, so what the Hell. (It’s also a good warm-up for another WitCH, to appear in the next day or so.) It comes from the 2011 Mathematical Methods Exam 1:

For part (a), the Examination Report indicates that f(g)(x) =([x+2][x+8]), leading to c = 2 and d = 8, or vice versa. The Report indicates that three quarters of students scored 2/2, “However, many [students] did not state a value for c and d”.

For Part (b), the Report indicates that 84% of students scored 0/2. After indicating the intended answer, (-∞,-8) U (-2,∞) (-∞,-8] U [-2,∞) or R\backslash(-8,-2), the Report goes on to comment:

“This question was very poorly done. Common incorrect responses included [-3,3] (the domain of  f(x); x ≥ -2 (as the ‘intersection’ of  x ≥ -8 with x ≥ -2); or x ≥ -8 (as the ‘union’ of x ≥ -8 with x ≥ -2). Those who attempted to use the properties of composite functions tended to get confused. Students needed to look for a domain that would make the square root function work.”

The Report does not indicate how students got “confused”, although the composition of functions is briefly discussed in the Study Design (page 72).