Inverted Logic

The 2018 Northern Hemisphere Mathematical Methods exams (1 and 2) are out. We didn’t spot any Magritte-esque lunacy, which was a pleasant surprise. In general, the exam questions were merely trivial, clumsy, contrived, calculator-infested and loathsomely ugly. So, all in all not bad by VCAA standards.

There, was, however, one notable question. The final multiple choice question on Exam 2 reads as follows:

Let f be a one-to-one differentiable function such that f (3) = 7, f (7) = 8, f′(3) = 2 and f′(7) = 3. The function g is differentiable and g(x) = f –1(x) for all x. g′(7) is equal to …

The wording is hilarious, at least it is if you’re not a frazzled Methods student in the midst of an exam, trying to make sense of such nonsense. Indeed, as we’ll see below, the question turned out to be too convoluted even for the examiners.

Of course –1 is a perfectly fine and familiar name for the inverse of f. It takes a special cluelessness to imagine that renaming –1 as g is somehow required or remotely helpful. The obfuscating wording, however, is the least of our concerns.

The exam question is intended to be a straight-forward application of the inverse function theorem. So, in Leibniz form dx/dy = 1/(dy/dx), though the exam question effectively requires the more explicit but less intuitive function form, 

    \[\boldsymbol {\left(f^{-1}\right)'(b) = \frac1{f'\left(f^{-1}(b)\right)}}.}\]

IVT is typically stated, and in particular the differentiability of –1 can be concluded, with suitable hypotheses. In this regard, the exam question needlessly hypothesising that the function g is differentiable is somewhat artificial. However it is not so simple in the school context to discuss natural hypotheses for IVT. So, underlying the ridiculous phrasing is a reasonable enough question.

What, then, is the problem? The problem is that IVT is not explicitly in the VCE curriculum. Really? Really.

Even ignoring the obvious issue this raises for the above exam question, the subliminal treatment of IVT in VCE is absurd. One requires plenty of inverse derivatives, even in a first calculus course. Yet, there is never any explicit mention of IVT in either Specialist or Methods, not even a hint that there is a common question with a universal answer.

All that appears to be explicit in VCE, and more in Specialist than Methods, is application of the chain rule, case by isolated case. So, one assumes the differentiability of –1 and and then differentiates –1(f(x)) in Leibniz form. For example, in the most respected Methods text the derivative of y = log(x) is somewhat dodgily obtained using the chain rule from the (very dodgily obtained) derivative of x = ey.

It is all very implicit, very case-by-case, and very Leibniz. Which makes the above exam question effectively impossible.

How many students actually obtained the correct answer? We don’t know since the Examiners’ Report doesn’t actually report anything. Being a multiple choice question, though, students had a 1 in 5 chance of obtaining the correct answer by dumb luck. Or, sticking to the more plausible answers, maybe even a 1 in 3 or 1 in 2 chance. That seems to be how the examiners stumbled upon the correct answer.

The Report’s solution to the exam question reads as follows (as of September 20, 2018):

f(3) = 7, f'(3) = 8, g(x) = f –1(x) , g‘(x) = 1/2 since

f'(x) x f'(y) = 1, g(x) = f'(x) = 1/f'(y).

The awfulness displayed above is a wonder to behold. Even if it were correct, the suggested solution would still bear no resemblance to the Methods curriculum, and it would still be unreadable. And the answer is not close to correct.

To be fair, The Report warns that its sample answers are “not intended to be exemplary or complete”. So perhaps they just forgot the further warning, that their answers are also not intended to be correct or comprehensible.

It is abundantly clear that the VCAA is incapable of putting together a coherent curriculum, let alone one that is even minimally engaging. Apparently it is even too much to expect the examiners to be familiar with their own crappy curriculum, and to be able to examine it, and to report on it, fairly and accurately.

WitCH 4

Well, WitCH 2, WitCH 3 and Tweel’s Mathematical Puzzle are still there to ponder. A reminder, it’s up to you, Dear Readers, to identify the crap. There’s so much crap, however, and so little time. So, it’s onwards and downwards we go.

Our new WitCH, courtesy of New Century Mathematics, Year 10 (2014), is inspired by the Evil Mathologer‘s latest video. The video and the accompanying articles took the Evil Mathologer (and his evil sidekickhundreds of hours to complete. By comparison, one can ponder how many minutes were spent on the following diagram:

OK, Dear Readers, time to get to work. Grab yourself a coffee and see if you can itemise all that is wrong with the above.

Update

Well done, craphunters. Here’s a summary, with a couple craps not raised in the comments below:

  • In the ratio a/b, the nature of a and b is left unspecified.
  • The disconnected bubbles within the diagram misleadingly suggest the existence of other, unspecified real numbers.
  • The rational bubbles overlap, since any integer can also be represented as a terminating decimal and as a recurring decimal. For example, 1 = 1.0 = 0.999… (See here and here and here for semi-standard definitions.) Similarly, any terminating decimal can also be represented as a recurring decimal.
  • A percentage need not be terminating, or even rational. For example, π% is a perfectly fine percentage.
  • Whatever “surd” means, the listed examples suggest way too restrictive a definition. Even if surd is intended to refer to “all rooty things”, this will not include all algebraic numbers, which is what is required here.
  • The expression “have no pattern and are non-recurring” is largely meaningless. To the extent it is meaningful it should be attached to all irrational numbers, not just transcendentals.
  • The decimal examples of transcendentals are meaningless.

VTACKY

It’s been a long, long time. Alas, we’ve been kept way too busy by the Evil Mathologer, as well as some edu-idiots, who shall remain nameless but not unknown. Anyway, with luck normal transmission has now resumed. There’s a big, big backlog of mathematical crap to get through.

To begin, there’s a shocking news story that has just appeared, about schools posting “wrong Year 12 test scores” and being ordered to remove them by the Victorian Tertiary Admissions Centre. Naughty, naughty schools!

Perhaps.

The report tells of how two Victorian private schools had conflated Victoria’s VCE subject scores and International Baccalaureate subject scores. The schools had equated the locally lesser known IB scores of 6 or 7 to the more familiar VCE ATAR of 40+, to then arrive at a combined percentage of such scores. Reportedly, this raised the percentage of “40+” student scores at the one school from around 10% for VCE alone to around 25% for combined VCE-IB, with a comparable raise for the other school. More generally, it was reported that about a third of IB students score a 6 or 7, whereas only about one in eleven VCE scores are 40+.

On the face of it, it seems likely that the local IB organisation that had suggested Victorian schools use the 6+ = 40+ equation got it wrong. That organisation is supposedly reviewing the comparison and the two schools have removed the combined percentages from their websites.

There are, however, a few pertinent observations to be made:

None of the sense or substance of the above is hinted at in the schools-bad/VTAC-good news report.

Of course the underlying issue is tricky. Though the IBO tries very hard to compare IB scores, it is obviously very difficult to compare IB apples to VCE oranges. We have no idea whether or how one could create a fair and useful comparison. We do know, however, that accepting VTAC’s cocky sanctimony as the last word on this subject, or any subject, would be foolish.

VCAA Plays Dumb and Dumber

Late last year we posted on Madness in the 2017 VCE mathematics exams, on blatant errors above and beyond the exams’ predictably general clunkiness. For one (Northern Hemisphere) exam, the subsequent VCAA Report had already appeared; this Report was pretty useless in general, and specifically it was silent on the error and the surrounding mathematical crap. None of the other reports had yet appeared.

Now, finally, all the exam reports are out. God only knows why it took half a year, but at least they’re out. We have already posted on one particularly nasty piece of nitpicking nonsense, and now we can review the VCAA‘s own assessment of their five errors:

 

So, the VCAA responds to five blatant errors with five Trumpian silences. How should one describe such conduct? Unprofessional? Arrogant? Cowardly? VCAA-ish? All of the above?

 

WitCH 3

First, a quick note about these WitCHes. Any reasonable mathematician looking at such text extracts would immediately see the mathematical flaw(s) and would wonder how such half-baked nonsense could be published. We are aware, however, that for teachers and students, or at least Australian teachers and students, it is not nearly so easy. Since school mathematics is completely immersed in semi-sense, it is difficult to know the rules of the game. It is also perhaps difficult to know how a tentative suggestion might be received on a snarky blog such as this. We’ll just say, though we have little time for don’t-know-as-much-as-they-think textbook writers, we’re very patient with teachers and students who are honestly trying to figure out what’s what.

Now onto WitCH 3, which follows on from WitCH 2, coming from the same chapter of Cambridge’s Specialist Mathematics VCE Units 3 & 4 (2018).* The extract is below, and please post your thoughts in the comments. Also a reminder, WitCH 1 and WitCH 2 are still there, awaiting proper resolution. Enjoy.

* Cambridge is a good target, since they are the most respected of standard Australian school texts. We will, however, be whacking other publishers, and we’re always open to suggestion. Just email if you have a good WitCH candidate, or crap of any kind you wish to be attacked.

Tweel’s Mathematical Puzzle

Tweel is one of the all-time great science fiction characters, the hero of Stanley G. Weinbaum’s wonderful 1934 story, A Martian Odyssey. The story is set on Mars in the 21st century and begins with astronaut Dick Jarvis crashing his mini-rocket. Jarvis then happens upon the ostrich-like Tweel being attacked by a tentacled monster. Jarvis saves Tweel, they become friends and Tweel accompanies Jarvis on his long journey back to camp and safety, the two meeting all manner of exotic Martians along the way.

A Martian Odyssey is great fun, fantastically inventive pulp science fiction, but the weird, endearing and strangely intelligent Tweel raises the story to another level. Tweel and Jarvis attempt to communicate, and Tweel learns a few English words while Jarvis can make no sense of Tweel’s sounds, is simply unable to figure out how Tweel thinks. However, Jarvis gets an idea:

“After a while I gave up the language business, and tried mathematics. I scratched two plus two equals four on the ground, and demonstrated it with pebbles. Again Tweel caught the idea, and informed me that three plus three equals six.”

That gave them a minimal form of communication and Tweel turns out to be very resourceful with the little mathematics they share. Coming across a weird rock creature, Tweel describes the creature as

“No one-one-two. No two-two-four”. 

Later Tweel describes some crazy barrel creatures:

“One-one-two yes! Two-two-four no!” 

A Martian Odyssey works so well because Weinbaum simply describes the craziness that Jarvis encounters, with no attempt to explain it. Tweel is just sufficiently familar – a few words, a little arithmetic and a sense of loyalty – to make the craziness seem meaningful if still not comprehensible.

But now, here’s the puzzle. The communication between Jarvis and Tweel depends upon the universality of mathematics, that all intelligent creatures will understand and agree that 1 + 1 = 2 and 2 + 2 = 4, and so forth.

But why? Why is 1 + 1 = 2? Why is 2 + 2 = 4?

The answers are perhaps not so obvious. First, however, you should go read Weinbaum’s awesome story (and the sequel). Then ponder the puzzle.

Update

Thanks to those who have posted so far. Everyone is circling with the right ideas, but perhaps people are searching for something deeper than intended. Anyway, for this first update (to which people are free to object in the comments), here is our suggested, simplest answer to why 1 + 1 = 2:

“1 + 1 = 2” is true by definition. 

To take a step back, what does 2 mean? It depends slightly on how you think of the natural numbers being given, but there are really only (ahem) two, similar choices. If you accept that addition is around then 2/two is simply a new symbol/name that stands for 1 + 1.

Or, more fundamentally, we can follow Number 8 and go Peano-ish, in which case 2 is defined as S(1), as the “successor” of 1. But then we have to define addition, and the first(ish) step for that is to define n + 1 = S(n); that is, 1 + 1 is defined to be S(1), which we have decided to call 2. There’s a good discussion of it all here.

With 1 + 1 = 2 done (modulo objections), why now is 2 + 2 = 4?

What is this Crap Here?

OK, Dear Reader, you’ve got work to do.

So far on this blog we haven’t attacked textbooks much at all. That’s because Australian maths texts are, in the main, well-written and mathematically sound.

Yep, just kidding. Of course the texts are pretty much universally and uniformly awful. Choosing a random page from almost any text, one is pretty much guaranteed to find something ranging from annoying to excruciating. But, the very extent of the awfulness makes it difficult and time-consuming and tiring to grasp and to critique any one specific piece of the awful puzzle.

The Evil Mathologer, however, has come up with a very good idea: just post a screenshot of a particularly awful piece of text, and leave others to think and to write about it. So, here we go.

Our first WitCH sample, below, comes courtesy of the Evil Mathologer and is from Cambridge Essentials, Year 9 (2018). You, Dear Reader, are free to simply admire the awfulness. You may, however, go further, and what you might do depends upon who you are:

  • If you believe you can pinpoint the awfulness in the excerpt then feel free to spell it out in the comments, in small or great detail. You could also offer suggestions on how the ideas could have been presented correctly and coherently. You are also free to ponder how this nonsense came to be, what a teacher or student should do if they have to deal with this nonsense, whether we can stop such nonsense,* and so on.
  • If you don’t know or, worse, don’t believe the excerpt below is awful then you should quickly find someone to explain to you why it is.

Here it is. Enjoy. (Updated below.)

* We can’t.

Update

Following on from the comments, here is a summary of the issues with the page above. We also hope to post generally on index laws in the near future.

  • The major crime is that the initial proof is ass-backwards. 91/2 = √9 by definition, and that’s it. It is then a consequence of such definitions that the index laws continue to hold for fractional indices.
  • Beginning with 91/2 is pedagogically weird, since it simplifies to 3, clouding the issue.
  • The phrasing “∛5 is irrational and [sic] cannot be expressed as a fraction” is off-key.
  • The expression “with no repeated pattern” is vague and confusing.
  • The term “surd” is common but is close to meaningless.
  • Exploring irrationality with a calculator is non-sensical and derails meaningful exploration.
  • Overall, the page is long, cluttered and clumsy (and wrong). It is a pretty safe bet that few teachers and fewer students ever attempt to read it.

Little Steps for Little Minds

Here’s a quick but telling nugget of awfulness from Victoria’s 2017 VCE maths exams. Q9 of the first (non-calculator) Methods Exam is concerned with the function

    \[\boldsymbol {f(x) = \sqrt{x}(1-x)\,.}\]

In Part (b) of the question students are asked to show that the gradient of the tangent to the graph of f” equals \boldsymbol{ \frac{1-3x}{2\sqrt{x}} } .

A normal human being would simply have asked for the derivative of f, but not much can go wrong, right? Expanding and differentiating, we have

    \[\boldsymbol {f'(x) = \frac{1}{2\sqrt{x}} - \frac32\sqrt{x}=\frac{1-3x}{2\sqrt{x}}\,.}\]

Easy, and done.

So, how is it that 65% of Methods students scored 0 on this contrived but routine 1-point question? Did they choke on “the gradient of the tangent to the graph of f” and go on to hunt for a question written in English?

The Examiners’ Report pinpoints the issue, noting that the exam question required a step-by-step demonstration …. And, [w]hen answering ‘show that’ questions, students should include all steps to demonstrate exactly what was done (emphasis added). So the Report implies, for example, that our calculation above would have scored 0 because we didn’t explicitly include the step of obtaining a common denominator.

Jesus H. Christ.

Any suggestion that our calculation is an insufficient answer for a student in a senior maths class is pedagogical and mathematical lunacy. This is obvious, even ignoring the fact that Methods questions way too often are flawed and/or require the most fantastic of logical leaps. And, of course, the instruction that “all steps” be included is both meaningless and utterly mad, and the solution in the Examiners’ Report does nothing of the sort. (Exercise: Try to include all steps in the computation and simplification of f’.)

This is just one 1-point question, but such infantilising nonsense is endemic in Methods. The subject is saturated with pointlessly prissy language and infuriating, nano-step nitpicking, none of which bears the remotest resemblance to real mathematical thought or expression.

What is the message of such garbage? For the vast majority of students, who naively presume that an educational authority would have some expertise in education, the message is that mathematics is nothing but soulless bookkeeping, which should be avoided at all costs. For anyone who knows mathematics, however, the message is that Victorian maths education is in the clutches of a heartless and entirely clueless antimathematical institution.

NAPLAN’s Numeracy Test

NAPLAN has been much in the news of late, with moves for the tests to go online while simultaneously there have been loud calls to scrap the tests entirely. And, the 2018 NAPLAN tests have just come and gone. We plan to write about all this in the near future, and in particular we’re curious to see if the 2018 tests can top 2017’s clanger. For now, we offer a little, telling tidbit about ACARA.

In 2014, we submitted FOI applications to ACARA for the 2012-2014 NAPLAN Numeracy tests. This followed a long and bizarre but ultimately successful battle to formally obtain the 2008-2011 tests, now available here: some, though far from all, of the ludicrous details of that battle are documented here. Our requests for the 2012-2014 papers were denied by ACARA, then denied again after ACARA’s internal “review”. They were denied once more by the Office of the Australian Information Commissioner. We won’t go into OAIC’s decision here, except to state that we regard it as industry-capture idiocy. We lacked the energy and the lawyers, however, to pursue the matter further.

Here, we shall highlight one hilarious component of ACARA’s reasoning. As part of their review of our FOI applications, ACARA was obliged under the FOI Act to consider the public interest arguments for or against disclosure. In summary, ACARA’s FOI officer evaluated the arguments for disclosure as follows:

  • Promoting the objects of the FOI Act — 1/10
  • Informing a debate on a matter of public importance — 1/10
  • Promoting effective oversight of public expenditure — 0/10

Yes, the scoring is farcical and self-serving, but let’s ignore that.

ACARA’s FOI officer went on to “total” the public interest arguments in favour of disclosure. They obtained a “total” of 2/10.

Seriously.

We then requested an internal review, pointing out, along with much other nonsense, ACARA’s FOI officer’s dodgy scoring and dodgier arithmetic. The internal “review” was undertaken by ACARA’s CEO. His “revised” scoring was as follows:

  • Promoting the objects of the FOI Act — 1/10
  • Informing a debate on a matter of public importance — 1/10
  • Promoting effective oversight of public expenditure — 0/10

And his revised total? Once again, 2/10.

Seriously.

These are the clowns in charge of testing Australian students’ numeracy.