ACARA is Confronted With the Big Ideas

In this column, ACARA will be playing the role of the Good Guy.

Now that we have your attention, we’ll confess that we were exaggerating. ACARA is, of course, always the Bad Guy. But this column also contains a Worse Guy, a bunch of grifters called Center for Curriculum Redesign. ACARA appears to be fighting them, and fighting themselves.

Last week, The Australian‘s education reporter, Rebecca Urban, wrote a column on ACARA’s current attempts to revise the Australian Curriculum (paywalled, and don’t bother, and it’s Murdoch). The article, titled Big ideas for mathematics curriculum fails the test, begins as follows:

Plans for a world-class national school curriculum to arrest Australia’s declining academic results are in disarray after a proposal to base the teaching of mathematics around “big ideas” was rejected twice.

So, apparently Australia has plans for a world-class curriculum.1 Who knew? At this stage we’d be happy with plans for a second rate curriculum, and we’d take what we got. But a curriculum based upon “big ideas”? It’s a fair bet that that’s not aiming within cooee of first or second. We’ll get to these “big ideas”, and some much worse little ideas, but first, some background.

The sources of this nonsense are two intertwined and contradictory undertakings within ACARA. The first undertaking is a review of the Australian Curriculum, which ACARA began last year, with a particular emphasis on mathematics. On ACARA’s own terms, the Review makes some sense; if nothing else, the Australian Curriculum is unarguably a tangled mess, with “capabilities” and “priorities” and “learning areas” and “strands” and “elaborations” continually dragging teachers this way and that. The consequence, independent of the Curriculum being good or bad, is that is difficult to discern what the Curriculum is, what it really cares about. As such, the current Review is looking for simplification of the Curriculum, with emphasis on “refining” and “decluttering”, and the like.

This attempt to tidy the Australian Curriculum, to give it a trim and a manicure, is natural and will probably do some good. Not a lot of good: the current Review is fundamentally too limited, even on its own terms, and so appears doomed to timidity.2 But, some good. The point, however, is the current Review is definitively not seeking a major overhaul of the Curriculum, much less a revolution. Of course we would love nothing more than a revolution, but “revolution” does not appear in the Terms of Reference.

The hilarious problem for ACARA is the second, contradictory undertaking: ACARA have hired themselves a gang of revolutionaries. In 2018, ACARA threw a bunch of money at the Center for Curriculum Redesign, for CCR “to develop an exemplar world-class mathematics curriculum”. ACARA’s “oh, by the way” announcement suggests that they weren’t keen on trumpeting this partnership, but CCR went the full brass band. Their press release proudly declared the project a “world’s first”, and included puff quotes from then ACARA CEO, Bob the Blunder, and from PISA king, Andreas Schleicher. And the method to produce this exemplar world-class, ACARA-PISA-endorsed masterpiece? CCR would be

“applying learnings from recent innovations in curriculum design and professional practice …”

And the driving idea?

“… the school curriculum needs to allow more time for deeper learning of discipline-specific content and 21st century competencies.”

This grandiose, futuristic snake oil was an idiot step too far, even for the idiot world of Australian education, and as soon as the ACARA-CCR partnership became known there was significant pushback. In an appropriately snarky report (paywalled, Murdoch), Rebecca Urban quoted ex-ACARA big shots, condemning the ACARA-CCR plan as “the latest in a long line of educational fads” and “a rather stealthy shift in approach”. Following Urban’s report, there was significant walking back, both from Bob the Blunder, and from the then federal education minister, Dan “the Forger” Tehan. But revolutionaries will do their revolutionary thing, and CCR seemingly went along their merry revolutionising way. And, here we are.

Urban notes that the proposal that ACARA has just rejected – for a second time – placed a “strong focus on developing problem-solving skills”, and she quotes from the document presented to ACARA, on the document’s “big ideas”:3

Core concepts in mathematics centre around the three organising ideas of mathematics structures approaches and mathematising [emphasis added] …Knowledge and conceptual understanding of mathematical structures and approaches enables students to mathematise situations, making sense of the world.”

Mathematising? Urban notes that this uncommon term doesn’t appear in ACARA’s literature, but is prominent in CCR’s work. She quotes the current proposal as defining mathematising as

“the process of seeing the world using mathematics by recognising, interpreting situations mathematically.”

So, all this big ideas stuff appears to amount to the standard “work like a mathematician”, problem-centred idiocy, ignoring the fact that the learning of the fundamentals of mathematics has very, very little to do with being a mathematician.4 Really, not a fresh hell, just some variation of the current, familiar hell.

So, why write on this latest version of the familiar problem-solving nonsense? Because what has reportedly been presented to ACARA may be far, far worse.

Most sane people realise that before tackling some big idea it is somewhat useful to get comfortable with relevant small ideas. In this vein, before the grand adventure of mathematising one would reasonably want kids to engage in some decent numbering and algebra-ing. You want the kids to do some mathematising nonsense? Ok, it’s dumb, but at least make sure that the kids first know some arithmetic and can handle an equation or two.  And this is where the proposal just presented to ACARA seems to go from garden-variety nonsense to full-blown lunacy.

Recall that the stated, non-revolutionary goal of the current Review is to clarify and refine and declutter the Australian Curriculum. Along these lines, the proposal presented to ACARA contained a number of line-item suggestions to accompany the big ideas. Urban quotes some small beer suggestions, such as the appropriate stage to be recognising coin denominations, the ordering of the months and the like. But, along with the small beer, Urban documents some big poison, such as the following:

\color{red}\mbox{\bf Year 4} \quad\boldsymbol{-}\quad  \left(\aligned&\mbox{\bf recognise represent and order numbers}\\ &\mbox{\bf to at least tens of thousands}\endaligned\right) \quad \mbox{\bf Not essential at year level}

Christ. If students don’t have a handle on ten-ing by the end of Year 4 then something is seriously screwed. At that stage the students should be happily be zooming into the zillions, but some idiots – the same idiots hell bent on real world problem-solving – imagine tens of thousands is some special burden.

The next poison:

\color{red}\mbox{\bf Year 5} \quad\boldsymbol{-}\quad \mbox{\bf Using fractions to represent probabilities} \quad  \left(\aligned&\mbox{\bf students are not ready,}\\ &\mbox{\bf promotes procedural knowledge} \\ & \mbox{\bf over conceptual understanding} \endaligned\right)

Here, the idiots are handed a gun on a platter, which they grab by the muzzle and then shoot themselves. There is absolutely zero need to cover probability, or statistics, in primary school. Its inclusion is exactly the kind of thoughtless and cumbersome numeracy bloat that makes the Australian Curriculum such a cow. But, if one is going to cover probability in primary school, the tangible benefit is that it provides novel and natural contexts to represent with fractions. Take away the fractions, and what is this grand “conceptual understanding” remaining? That some things happen less often often than other things? Wonderful.

One last swig of poison, strong enough to down an elephant:

\color{red}\mbox{\bf Years 7-10} \quad\boldsymbol{-}\quad \mbox{\bf Solving equations algebraically} \quad  \left(\aligned&\mbox{\bf Not essential for all students,}\\ &\mbox{\bf especially for more complex equations.} \\ & \mbox{\bf Technology can be used as a support} \endaligned\right)

On the scale of pure awfulness, this one scores an 11, maybe a 12. It is as bad as it can be, and then worse.

PISA types really have a thing about algebra. They hate it. And, this hatred of algebra demonstrates the emptiness of their grand revolutionary plans. Algebra is the fundamental mechanics of mathematical thought. Without a solid sense of and facility with algebra, all that mathematising and problem-solving is fantasy; it can amount to no more than trivial and pointless number games.

The teaching of algebra is already in an appalling, tokenistic state in Australia. It is woefully, shamefully underemphasised in lower secondary school, which is then the major source of students’ problems in middle school, and why so many students barely crawl across the finish line of senior mathematics, if they make it at all.

What is “more complex equations” supposed to mean for 7 – 10 algebra? The material gets no more complicated than quadratics, so presumably they mean quadratics, the hobgoblin of little saviours. True, this material tends to be taught pointlessly and poorly. But “complex”? Simply, no. It amounts to little more than AB = 0 implying that either A or B is 0, a simple and powerful idea that many students never solidly get. The rest is detail, not much detail, and the detail is just not that hard.

Of course, a significant reason why algebra is taught so, so badly is that it is almost universally taught and tested with “technology”, from calculators to nuclear CAS weapons, to online gaming of the kind that that asshole Tudge is promoting. And all of this is “used as a support”? That idea of “support”, just as stated, is bad enough, bringing forth images of kids limping through the material. But all this technology is much worse than a crutch; it is an opiate.

It is a minimal relief if ACARA has rejected the current proposal, but we have no real idea what is going on or what will happen next. We don’t how much much poison the proposal contained, or even who concocted it. We don’t know if the rejection of this proposal amounts to a war between CCR and a new, more enlightened ACARA, or a civil war within ACARA itself.5 We should find out soon enough, however. ACARA has promised to release a draft curriculum by the end of April, giving them a month or so to come to terms with the truly idiotic ideas that they are being presented. ACARA has a month or so to avoid becoming, yet again and still, Australia’s educational laughing stock.

************************************************************************

1) We really wanted to slip “Urban myth” into the title of this post, but decided it would have been unfair. Yes, “world class” required quotation marks, or something. It seems, however, that Rebecca Urban was just carelessly, or perhaps snidely, repeating a piece of ACARA puffery, which is not the focus of her report. In general, Urban tends to be less stenographic than other education (all) reporters; she is opinionated and, from what we’ve seen, she seems critical of the right things. We haven’t seen evidence that Urban knows about mathematics education, or is aware of just how awful things now are, but we also haven’t seen her repeat any of the common idiocies.

2) We hope to write on the Curriculum Review in the next week or so, give or take a Mathologer task.

3) The proposal just presented to ACARA is not publicly available, and Urban appears to have only viewed snippets of it. It is not even clear, at least to us, who are the authors of the proposal. We’re accepting that Urban’s report is accurate as far as it goes, while trying to avoid speculating on the much missing information.

4) Urban’s report includes some good and critical, but not sufficiently critical, quotes from teacher and writer, Greg Ashman.

5) David de Carvalho, ACARA’s new CEO, appears to be an intelligent and cultured man. Maybe insufficiently intelligent or cultured, or insufficiently honest, to declare the awfulness of NAPLAN and the Australian Curriculum, but a notable improvement over the past.

PoSWW 16: Not Essential

The questions below come from something called Essential Assessment and, to be upfront, the questions are somewhat misleading. To give EA some micro-credit, not all their questions were this bad, even if plenty more that we’d seen could have been posted. So, EA is not quite as bad as these questions suggest.

On the other hand, EA, like pretty much all teaching-replacement software, appears be utterly aimless and, thus, utterly pointless and, thus, much worse than pointless.

Signs of the TIMSS

The 2019 TIMSS results are just about to be released, and the question is should we care? The answer is “Hell yes”.

TIMSS is an international maths and science test, given at the end of year 4 and year 8 (in October in the Southern Hemisphere). Unlike PISA, which, as we have noted, is a Pisa crap, TIMSS tests mathematics. TIMSS has some wordy scenario problems, but TIMSS also tests straight arithmetic and algebra, in a manner that PISA smugly and idiotically rejects.

The best guide to what TIMSS is testing, and to what Australian students don’t know and can’t do, are the released 2011 test items and country-by-country results, here and here. We’ll leave it for now for others to explore and to comment. Later, we’ll update the post with sample items, and once the 2019 results have appeared.

UPDATE (08/12/20)

The report is out, with the ACER summary here, and the full report can be downloaded from here. The suggestion is that Australia’s year 8 (but not year 4) maths results have improved significantly from the (appalling) results of 2015 and earlier. If so, that is good, and very surprising.

For now, we’ll take the results at face value. We’ll update if (an attempt at) reading the report sheds any light.

FURTHER UPDATE (08/12/20)

OK, it starts to become clear. Table 9.5 on page 19 of the Australian Highlights indicates that year 8 maths in NSW improved dramatically from 2015, while the rest of the country stood still. This is consistent with our view of NSW as an educational Switzerland, to which everyone should flee. We’re not sure why NSW improved, and there’s plenty to try to figure out, but the mystery of “Australia’s” dramatic improvement in year 8 maths appears to be solved.

UPDATE (09/12/20)

OK, no one is biting on the questions, so we’ll add a couple teasers. Here are the first two released mathematics questions from the 2011 year 8 TIMSS test:

1.   Ann and Jenny divide 560 zeds between them. If Jenny gets 3/8 of the money, how many zeds will Ann get?

2.   \color{blue}\boldsymbol{\frac{4}{100} + \frac{3}{1000} = }

(The second question is multiple choice, with options 0.043, 0.1043, 0.403 and 0.43.)

To see the percentage of finishing year 8 students from each country who got these questions correct, you’ll have to go the document (pp 1-3).

A Simple Message to Primary Schools About Multiplication Tables

Dear Primary Schools,

If your students are not learning their multiplication tables, up to 12, by heart, then you are fucking up.

If you think giving your students a grab-bag of tricks replaces multiplication tables, then you are fucking up.

If you think orchestrating play-based, student-centred theatricalities replaces multiplication tables, then you are fucking up.

If you think quoting the Australian Curriculum gives you license to not teach multiplication tables, then you are fucking up.

If you think quoting some education twat gives you license to not teach multiplication tables, then you are fucking up.

Thank you for your attention.

BODMAS v USBB

Yesterday, I received an email from Stacey, a teacher and good friend and former student. Stacey was asking for my opinion of “order of operations”, having been encouraged to contact me by Dave, also a teacher and good friend and former student. Apparently, Dave had suggested that I had “strong opinions” on the matter. I dashed off a response which, in slightly tidied and toned form, follows. 

Strong opinions? Me? No, just gentle suggestions. I assume they’re the same as Dave’s, but this is it:

1) The general principle is that if mathematicians don’t worry about something then there is good reason to doubt that students or teachers should. It’s not an axiom, but it’s a very good principle.

2) Specifically, if I see something like
3 x 5 + 2 x -3
my response is

a) No mathematician would ever, ever write that.

b) I don’t know what the Hell the expression means. Honestly.

c) If I don’t know what it means, why should I expect anybody else to know?

3) The goal in writing mathematics is not to follow God-given rules, but to be clear. Of course clarity can require rules, but it also requires common sense. And in this case common sense dictates

USE 

SOME 

BLOODY 

BRACKETS

For Christ’s sake, why is this so hard for people to understand? Just write (3 x 5) + 2 or 3 x (5 + 2), or whatever. It is almost always trivial to deambiguousize something, so do so.

The fact that schools don’t instruct this first and foremost, that demonstrates that BODMAS or whatever has almost nothing to do with learning or understanding. It is overwhelmingly a meaningless ritual to see which students best follow mindless rules and instruction. It is not in any sense mathematics. In fact, I think this all suggests a very worthwhile and catchy reform: don’t teach BODMAS, teach USBB.

[Note: the original acronym, which is to be preferred, was USFB]

4) It is a little more complicated than that, because mathematicians also write arguably ambiguous expressions, such ab + c and ab2 and a/bc. BUT, the concatenation/proximity and fractioning is much, much less ambiguous in practice. (a/bc is not great, and I would always look to write that with a horizontal fraction line or as a/(bc).)

5) Extending that, brackets can also be overdone, if people jump to overinterpret every real or imagined ambiguousness. The notation sin(x), for example, is truly idiotic; in this case there is no ambiguity that requires clarification, and so the brackets do nothing but make the mathematics ugly and more difficult to read.

6) The issue is also more complicated because mathematicians seldom if ever use the signs ÷ or x. That’s partially because they’re dealing with algebra rather than arithmetic, and partially because “division” is eventually not its own thing, having been replaced by making the fraction directly, by dealing directly with the result of the division rather than the division.

So, this is a case where it is perfectly reasonable for schools to worry about something that mathematicians don’t. Arithmetic obviously requires a multiplication sign. And, primary students must learn what division means well before fractions, so of course it makes sense to have a sign for division.  I doubt, however, that one needs a division sign in secondary school.

7) So, it’s not that the order of operations issues don’t exist. But they don’t exist nearly as much as way too many prissy teachers imagine. It’s not enough of a thing to be a tested thing.

Signs of the Times

Our second sabbatical post concerns, well, the reader can decide what it concerns.

Last year, diagnostic quizzes were given to a large class of first year mathematics students at a Victorian tertiary institution. The majority of these students had completed Specialist Mathematics or an equivalent. On average, these would not have been the top Specialist students, nor would they have been the weakest. The results of these quizzes were, let’s say, interesting.

It was notable, for example, that around 2/5 of these students failed to simplify the likes of 81-3/4. And, around 2/3 of the students failed to solve an inequality such as 2 + 4x ≥ x2 + 5. And, around 3/5 of the students failed to correctly evaluate \boldsymbol {\int_0^{\pi} \sin 5x \,{\rm d}x}\, or similar. There were many such notable outcomes.

Most striking for us, however, were questions concerning lists of numbers, such as those displayed above. Students were asked to write the listed numbers in ascending order. And, though a majority of the students answered correctly, about 1/4 of the students did not.

What, then, does it tell us if a quarter of post-Specialist students cannot order a list of common numbers? Is this acceptable? If not, what or whom are we to blame? Will the outcome of the current VCAA review improve things, or will it make matters worse?

Tricky, tricky questions.