As Number 8 and Potii pointed out, notation of the form AB is amtriguous, referring in turn to the line through A and B, the segment from A to B and the distance from A to B. (This lazy lack of definition appears to be systemic in the textbook.) And, as Potii pointed out, there’s nothing stopping A being the same point as C.

This PoSWW (as is the accompanying WitCH) is from Cambridge’s Mathematical Methods Units 1 and 2. and is courtesy of the Evil Mathologer. (A reminder, we continue to post on Cambridge not because their texts are worse than others, but simply because their badness is what we get to see. We welcome all emails with any suggestions for PoSWWs or WitCHes.)

We will update this PoSWW, below, after people have had a chance to comment.

Update

Similar to Witch 6, the above proof is self-indulgent crap, and obviously so. It is obviously not intended to be read by anyone.

One can argue how much detail should be given in such a proof, particularly in a subject and for a curriculum that systemically trashes the concept of proof. But it is difficult to see why the diagram below, coupled with the obvious equations and an easy word, wouldn’t suffice.

So far on this blog we haven’t attacked textbooks much at all. That’s because Australian maths texts are, in the main, well-written and mathematically sound.

Yep, just kidding. Of course the texts are pretty much universally and uniformly awful. Choosing a random page from almost any text, one is pretty much guaranteed to find something ranging from annoying to excruciating. But, the very extent of the awfulness makes it difficult and time-consuming and tiring to grasp and to critique any one specific piece of the awful puzzle.

The Evil Mathologer, however, has come up with a very good idea: just post a screenshot of a particularly awful piece of text, and leave others to think and to write about it. So, here we go.

Our first WitCH sample, below, comes courtesy of the Evil Mathologer and is from Cambridge Essentials, Year 9 (2018). You, Dear Reader, are free to simply admire the awfulness. You may, however, go further, and what you might do depends upon who you are:

If you believe you can pinpoint the awfulness in the excerpt then feel free to spell it out in the comments, in small or great detail. You could also offer suggestions on how the ideas could have been presented correctly and coherently. You are also free to ponder how this nonsense came to be, what a teacher or student should do if they have to deal with this nonsense, whether we can stop such nonsense,* and so on.

If you don’t know or, worse, don’t believe the excerpt below is awful then you should quickly find someone to explain to you why it is.

Here it is. Enjoy. (Updated below.)

* We can’t.

Update

Following on from the comments, here is a summary of the issues with the page above. We also hope to post generally on index laws in the near future.

The major crime is that the initial proof is ass-backwards. 9^{1/2} = √9 by definition, and that’s it. It is then a consequence of such definitions that the index laws continue to hold for fractional indices.

Beginning with 9^{1/2} is pedagogically weird, since it simplifies to 3, clouding the issue.

The phrasing “∛5 is irrational and [sic] cannot be expressed as a fraction” is off-key.

The expression “with no repeated pattern” is vague and confusing.

The term “surd” is common but is close to meaningless.

Exploring irrationality with a calculator is non-sensical and derails meaningful exploration.

Overall, the page is long, cluttered and clumsy (and wrong). It is a pretty safe bet that few teachers and fewer students ever attempt to read it.