We’ve written about this before, and the point is obvious. But, it’s apparently not sufficiently obvious for some wilfully blind mathematicians. So, let’s go again. Plus, there’s a prize for the best comment.*

ACARA is playing people with a cute syllogism.

- Problem-solving is good.
- The draft curriculum contains lots of problem-solving.
- Therefore the draft curriculum is good.

Yep, the syllogism is flawed from the get go. But in this post we want to focus on the second line, and we ask:

**Does the draft mathematics curriculum contain any problem-solving?**

Certainly the draft curriculum contains a hell of a lot of *something*. As we’ve noted, the draft refers to “investigating” or some variation of the word 298 times. And, students get to “explore” and the like 236 times, and they “model” or whatever 264 times. That’s a baker’s ton of inquiring and real-worlding, which some people, including some really clueless mathematicians, regard as a good thing. Ignoring such cluelessness, what about genuine mathematical problem-solving?

The draft curriculum refers to “problem(s)” to “solve” 154 times. But what do they mean? When, if ever, is the draft referring to a clearly defined *mathematical* problem that has a clearly defined *answer,* and which is to be *solved* with a choice of clearly defined *mathematical techniques*? To the extent that there are any such “problems”, do they rise above the level of a trivial exercise or computation? In the case of such trivial “problems”, is the label “problem-solving” more than a veil-thin disguise for the mandating of inquiry-learning?

In brief, is there more than a token amount of the draft’s “problem-solving” that is not either real-world “exploring/modelling/investigating” or routine exercises/skills to be taught in a ridiculously inappropriate inquiry manner?

Perhaps genuine mathematical problem-solving is there, and we are honestly curious to see what people have found or can find. But, we’ve found essentially nothing.

And so, to the competition. Find the *best* example of genuine, mathematical problem-solving in the draft curriculum. Answer in the comments below. The most convincing example will win a signed copy of the number one best-selling** *A Dingo Ate My Math Book*.

*) Yes, yes. we have those other competitions we still haven’t finalised. We will soon, we promise. As soon as we’re out of this ACARA swamp, we’ll be taking significant time out to catch up on our massive tidying backlog.

**) In Polster and Ross households.

## Update (29/07/21)

We’ve finally ended this. The winner is, hilariously, Glen. See here for details.