Eddie Woo’s Mental Connections

Eddie Woo has been annoying for a long time. Eddie knows much less than he realises and his smiling inanities, which are invariably swallowed whole, are a continual distraction from real issues and real solutions. But he’s gotten worse. Eddie Professor of Practice Woo has graduated from being a distraction and an annoyance to being an active menace. Continue reading “Eddie Woo’s Mental Connections”

An Education Review: The State of the State

It’s time for yet another review of education. This one, being conducted by Victoria’s Legislative Council Legal and Social Issues Committee, will look into “trends in student learning outcomes and student wellbeing in Victoria’s state education system following the COVID-19 pandemic”. The terms of reference and a video are below, and submissions can be made here. Continue reading “An Education Review: The State of the State”

Do You Gotta Get a Gimmick?

It is possible that the lessons to be had from burlesque for the teaching of mathematics have not been so fully appreciated. To help rectify this, here is a number from the musical Gypsy.

And the question: when teaching mathematics, do you gotta get a gimmick? Do gimmicks help? Or, do they simply give the illusion of helping?

I’m honestly not sure. I’m not even sure if my own teaching is gimmicky (although at times it has been described as burlesque).

Selling Teachers Short

A few days a ago, an occasional commenter told us about the teacher shortage at their school. They suggested the shortage was going to “play havoc” with their teaching load. We’re not quite sure how that works, since we thought there were strong and weird restrictions on what could be demanded of teachers, but we’re not doubting the reality on the ground. Our teacher correspondent also offered tentative reasons for the shortage: boomer teachers retiring, both naturally and motivated by covid; little incentive for people become new teachers; new teachers not lasting.

Continue reading “Selling Teachers Short”

Marty Talk – Not Quite The Prime Number Theorem

Having foolishly ventured out to Monash Uni last Tuesday to see the Evil Mathologre give a Lunchmaths talk, I found myself roped in to giving the next one. So, anyone who is around Monash next Tuesday and has nothing better to do is welcome to attend. Details below, and here. Continue reading “Marty Talk – Not Quite The Prime Number Theorem”

MAV’s Valuing of Mathematics

The MAV have started the engines for their 2022 Annual Conference. The organisers have already lined up an impressive list of speakers and, as always, the MAV have put out the call for anyone and everyone to present, at a cost of only $500 or so for the two-day extravaganza.

Of course, if planning to attend or present, one should keep in mind the theme and sub-themes of the conference: Continue reading “MAV’s Valuing of Mathematics”

Mr. McRae’s Triple Gift

This is a story from long, long ago. It is about Mr. McRae, who was our grade 4 teacher, at Macleod State School. We have written about Macleod before, and we have written, briefly, about Mr. McRae before, in regard to the moon landing:

I still have vivid-grainy memories of watching Armstrong’s first steps. A random few students from each class in Macleod State School were selected to go to the library to watch the event on the school’s one TV. I was not one of the lucky few. But Mr. Macrae, our wonderful Grade 4 teacher, just declared “Bugger it!”, determined which student in our class lived closest to the school, and sent out a posse to haul back the kid’s 2-ton TV. We then all watched the moon landing, enthralled and eternally grateful to Mr. Macrae.

He was that kind of guy. No-nonsense and intelligent and cultured.

The year he taught us, Mr. McRae was new to Macleod. He had just appeared on the playground before the first class of the year, tall and commanding. Rumour had it that he had played Under 19s for the Richmond Football Club, making Mr. McRae just shy of a Greek god. (The actual Greek god was, of course, Carl Ditterich.) He was a standard and excellent teacher. Firm, disciplined and disciplining, but kind, and with a calm and intelligent air of bemusement. He was the boss, but a thoughtful and unpredictable boss. Hence, our class getting to watch the moon landing. And, how else to explain the boxing match?

One day, Mr. McRae inadvertently started a harmless play-scuffle between two students. He then decided the dispute should be settled by a proper boxing match in front of the class. Once, of course, a kid had been sent home to fetch a couple pairs of boxing gloves. We can’t remember whether we lost, although we remember we didn’t win. In any case, neither of us had a clue how to box, and so the match was followed by Mr. McRae giving the class an impromptu lesson on technique. This was, to explain it a little, the era of Lionel Rose and Johnny Famechon and TV Ringside.

That’s all by way of background. The story we want to tell is of a mathematics lesson.

One Friday afternoon, Mr. McRae introduced his grade 4 class to Pythagoras’s theorem. Or, at least, to Pythagorean triples; we can’t specifically remember the triangles, or anything, but undoubtedly \boldsymbol{3^2 + 4^2 = 5^2} made an appearance. Why he showed us this, God only knows, but Mr. McRae ended the class with a challenge: find more triples. Our memory is that the specific challenge was to find a certain number of triples, maybe three, maybe five.

We have no idea what Mr. McRae hoped to achieve with this challenge, but we remember pondering, aimlessly, hoping to find triples. Eventually, by smart persistence and dumb luck, we stumbled upon the trick: doubling a triple gives a new triple. So, \boldsymbol{6^2 + 8^2 = 10^2}, and so on. With this kid-Eureka insight, we then happily spent the week-end doubling away.

Come Monday morning, Mr. McRae asked for the class’s triples. We proudly went to the blackboard and wrote up our largest creation. By memory, it was something in the millions. So,

    \[\boldsymbol{1572864^2 + 2096152^2 = 2621440^2}\]

or thereabouts. And then Mr. McRae uttered the fateful words:

“Let’s check it!”

There were the inevitable groans from the class, and the little Archimedes hero of the story was more popular than ever. But, Mr. McRae was the boss, and so we all set down to multiplying, including Mr. McRae himself. And, ten or so minutes later, the class collectively started to conclude … the equation was wrong. Yep, Little Archimedes had stuffed up. Which led to more fateful words:

“Let’s find the mistake!”

More groans, more multiplying, and eventually the error was found. By memory, after quite a few doubles, somewhere in the mid thousands. And, satisfied, Mr. McRae led the class on to whatever he had been planned for that day.

What is the moral? We have a reason for telling the story, beyond a simple tribute to a great, memorable teacher. We think there are morals there. We’ll leave it for the reader to ponder.

What Does “Technology” Mean?

To be more precise, what does “digital technology” mean and, precisely as possible, how is Digital Technology X used in Year Y of schooling? If you confused, then why not find out more about this here.

It is now impossible, of course, to write a document on education without genuflecting to the God of Technology. The repetitious chanting of “technology”, like a wired Tibetan monk, is the way people with no sense of the past or the present indicate how hip they are with the future. But, what do they mean? What technology are they talking about? It is a serious question, of which we only vaguely know the answer. We want help.

Of course by “technology”, the Education Experts are never intending to refer to something like blackboards and chalk. They would not even recognise such primitive devices as products of technology, although of course they are. No, what the EE mean by “technology” is electronic devices, mostly computers and computer programs, and preferably devices that are internetted. So, calculators and electronic whiteboards and Mathletics and Reading Eggs and iPads, and so forth.

The question is, precisely how are these devices used in specific classrooms? For example, are calculators used in Year 5 to perform arithmetic calculations, or to check calculations that have been done by hand? Is Mathletics used in Year 7 to teach ideas or to test knowledge and/or skills?

The same question applies to all subjects. Are word processors used in Year 6 to check and/or teach spelling and grammar? Are iPads used in Year 8 to check the definitions of words?

We want to know as much as possible, and as specifically as possible, what electronic gizmos are being used, and with whom and how.