MitPY 11: Asymptotes and Wolfram Alpha

This MitPY comes from frequent commenter, John Friend:

Dear colleagues,

I figured this was as good place as any to ask for help. I’m writing a small test on rational functions. One of my questions asks students to consider the function \displaystyle f(x) = \frac{x^3 + x}{x^2 + ax - 2a} where a \in R and to find the values of a for which the function intersects its oblique asymptote.

The oblique asymptote is y = x - a so they must first solve

\displaystyle \frac{x^3 + x}{x^2 + ax - 2a} = x - a … (1)

for x. The solution is \displaystyle x = \frac{2a^2}{(a+1)^2} and there are no restrictions along the way to getting this solution that I can see. So obviously a \neq -1.

It can also be seen that if a = 0 then equation (1) becomes \displaystyle \frac{x^3 + x}{x^2} = x which has no solution. So obviously a \neq 0.

When I solve equation (1) using Wolfram Alpha the result is also \displaystyle x = \frac{2a^2}{(a+1)^2}. But here’s where I’m puzzled:

Wolfram Alpha gives the obvious restriction a + 1 \neq 0 but also the restriction 5a^3 + 4a^2 + a \neq 0.

a \neq 0 emerges naturally (and uniquely) from this second restriction and I really like that this happens as a natural part of the solution process. BUT ….

I cannot see where this second restriction comes from in the process of solving equation (1)! Can anyone see what I cannot?


MitPY 10: Square Roots

This MitPY comes from a student, Jay:

I have a question relating to polynomial equations. For context I have just finished Y11 during which I completed Further 3&4, Methods 1&2 and Specialist 1&2.

This year during my maths methods class we covered the square root graph, however I was confused as to why it only showed the positive solutions. When I asked about it I was told it was because the radical symbol meant only the positive solution.

However since then I have learnt that the graph of \boldsymbol{y=x^{0.5}} also only shows the positive solution of the square root, while \boldsymbol{y^2=x} shows both. I am quite confused by why they aren’t the same. The only reason that I could think of is that it would mean \boldsymbol{y=x^2} would be the same as \boldsymbol{y^2=x^4}, and while the points (-2,-4) and (2,-4) fit the latter they clearly don’t fit former.

Could you please explain why these aren’t the same?

MitPY 9: Team Games

This MitPY is from commenter HollyBolly, who asked on the previous MitPY for some advice on diplomacy.*

Can you guys after all the serious business give me some advice for this situation: on a middle school Pythagoras and trig test, for a not very strong group of students. Questions are to be different from routine ones provided with the textbook subscription. I try “Verify that the triangle with sides (here: some triple, different from 3 4 5) is right, then find all its angles”. After reviewing, the question comes back: “Verify by drawing that a triangle with sides…”

How do you respond if that review has come from:

A. The HoD;

B. A teacher with more years at the school than me but equal in responsibilities in the maths department;

C. A teacher fresh from uni, in their20s.


*) Yeah, yeah. We’ll stay right out of the discussion on this one.