**Update (16/02/20)**

In general form, the (intended) scenario of the exam question is

*The* *vector resolute of in the direction of is ,*

Of course, given and it is standard to find . After a bit of trig and unit vectors, we have (in must useful form)

The exam question, however, is different: the question is, given and , how to find .
The problem with that is, unless the vectors and are appropriately related, the scenario simply cannot occur, meaning ** **cannot exist. Most obviously, the length of must be no greater than the length of . This requirement is clear from the triangle pictured, and can also be proved algebraically (with the dot product formula or the Cauchy-Schwarz inequality).

This implies, of course, that the exam question is ridiculous: for the vectors in the exam we have , and that’s the end of that. In fact, the situation is more delicate; given the pictured vectors form a right-angled triangle, we require that be perpendicular to . Which implies, once again, that the exam question is ridiculous.

Next, suppose we lucked out and began with perpendicular to . (Of course it is very easy to check whether we’ve lucked out.) How, then, do we find ? The answer is, as is made clear by the picture, “Well, duh”. The possible vectors are simply the (non-zero) scalar multiples of , and we’re done. Which shows that the mess in the intended solution, Answer A, is ridiculous.

There is a final question, however: the exam question is clearly ridiculous, but is the question also stuffed? The equations in answer A come from the equation for above and working backwards. And, these equations correctly return no solutions. Moreover, if the relationship between and had been such that there *were* solutions, then the A equations would have found them. So, completely ridiculous but still ok?

Nope.

The question is framed from start to end around definite, existing objects: we have THE vector resolute, resulting in THE values of m, n and p. If the VCAA had worded the question to find *possible* values, on the basis of a *possible* direction for the resolution, then, at least technically, the question would be consistent, with A a valid answer. Still an utterly ridiculous question, but consistent. But the VCAA didn’t do that and so the question isn’t that. The question is stuffed.